organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 2-allylsulfanyl-4-(4-methoxyphenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate

M. Nizam Mohideen,^a* A. Rasheeth^b and C. A. M. A. Hug^b

^aDepartment of Physics, The New College (Autonomous), Chennai 600 014, India, and ^bDepartment of Chemistry, The New College (Autonomous), Chennai 600 014, India

Correspondence e-mail: mnizam_new@yahoo.in

Received 13 August 2008; accepted 18 August 2008

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.141; data-to-parameter ratio = 14.5.

In the title compound, $C_{18}H_{22}N_2O_3S$, the pyrimidine ring is not planar. It adopts a half-chair conformation The crystal structure is characterized by classical N-H···O and C-H...O inter- and intramolecular hydrogen bonds, respectively. The title compound exhibits a wide spectrum of biological activities.

Related literature

For related literature, see: Allen et al. (1987); Biginelli (1893); Cremer & Pople (1975); Gurskaya et al. (2003a,b); Kappe (1993); Kappe et al. (1997); Li (2006); Nardelli (1983); Nizam Mohideen et al. (2008); Overman et al. (1995); Snider et al. (1996).

Experimental

Crystal data

$C_{18}H_{22}N_2O_3S$
$M_r = 346.44$
Monoclinic, $C2/c$
a = 28.325(5)Å
b = 7.410(2) Å
c = 20.202 (4) Å
$\beta = 121.61 \ (3)^{\circ}$

 $V = 3610.9 (18) \text{ Å}^3$ Z = 8Mo $K\alpha$ radiation $\mu = 0.20 \text{ mm}^{-1}$ T = 293 (2) K $0.4 \times 0.2 \times 0.1 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
$T_{\min} = 0.954, \ T_{\max} = 0.983$
Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	220 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
3183 reflections	$\Delta \rho_{\rm min} = -0.33 \ {\rm e} \ {\rm \AA}^{-3}$

16675 measured reflections

 $R_{\rm int} = 0.025$

3183 independent reflections 2722 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$N2-H2\cdots O2^i$	0.86	2.16	2.990 (2)	161	
$C7 - H7 \cdot \cdot \cdot O2$	0.98	2.46	2.831 (3)	102	

Symmetry code: (i) x, y - 1, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

MNM, AR, and CAMAH thank the Management of The New College, Chennai, India, for providing the necessary facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2100).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Biginelli, P. (1893). Gazz. Chim. Ital. 23, 360-413.
- Bruker (2004). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Gurskaya, G. V., Zavodnik, V. E. & Shutalev, A. D. (2003a). Crystallogr. Rep. 48 92-97
- Gurskaya, G. V., Zavodnik, V. E. & Shutalev, A. D. (2003b). Crystallogr. Rep. 48, 416-421.
- Kappe, C. O. (1993). Tetrahedron, 49, 6937-6963.
- Kappe, C. O., Fabian, W. M. F. & Semones, M. A. (1997). Tetrahedron, 53, 2803-2816
- Nardelli, M. (1983). Acta Cryst. C39, 1141-1142.
- Nizam Mohideen, M., Rasheeth, A., Huq, C. A. M. A. & Nizar, S. S. (2008). Acta Cryst. E64, 01752.
- Overman, L. E., Michael, H., Rabinowitz, M. H. & Renhowe, P. A. (1995). J. Am. Chem. Soc. 117, 2657-2658.
- Li, R. (2006). Acta Cryst. E62, 05480-05481.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Snider, B. B., Chen, J., Patil, A. D. & Freyer, A. J. (1996). Tetrahedron Lett. 37, 6977-6980
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2008). E64, o1812 [doi:10.1107/S1600536808026664]

Ethyl 2-allylsulfanyl-4-(4-methoxyphenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate

M. Nizam Mohideen, A. Rasheeth and C. A. M. A. Huq

Comment

The title compound, (I), belongs to the class of 5-substituted 1,2,3,4-tetrahydropyrimidin-2-ones, which are known as 'Biginelli compounds' (Kappe, 1993). The Biginelli reaction is a classic multicomponent reaction (Biginelli, 1893). The biological activity of some isolated alkaloids has been attributed to the presence of the dihydropyrimidinone moiety in the molecules (Overman *et al.*, 1995) and the conformation of the pyrimidine ring (Kappe *et al.*, 1997; Gurskaya *et al.*, 2003*a*,b). Most important among them are batzelladine alkaloids, which have been found to be potent HIVgp-120-CD4 inhibitors (Snider *et al.*, 1996). The aim of the present work was to study classical and extended Biginelli reactions. As part of our ongoing investigation of pyrimidine derivatives, the title compound, (I), has been prepared and its crystal structure is presented here.

The bond lengths and angles in the title compound (Fig. 1) are comparable with ethyl 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenylpyrimidine-5-carboxylate, a structure closely related to (I) (Nizam Mohideen *et al.*, 2008). The torsion angles [C1-C6-C7-C10=153.1 (2), C5-C6-C7-C10=-31.5 (2), C9-C10-C12-O2=171.3 (2), C7-C10-C12-O2=-11.6 (3), C9-C10-C12-O3=-10.1 (1) and C7-C10-C12-O3=167.1 (2) °] differs from the torsion angles <math>[47.6 (2), -137.1 (2), 10.1 (2), -167.8 (2) -171.5 (2) and 10.5 (2) °] in the reported structure mentioned above.

In (I), the heterocyclic ring (atoms N1, N2, C7, C8, C9, C10) of the dihydropyrimidine group is not planar, as indicated by the displacement of atom C7 from the least-squares plane [0.212 (1) Å] and by the C8—N1—C7—C10 torsion angle [31.1 (1) °]. Atom C11 deviating by -0.204 (1) Å from the least squares plane of the pyrimidine ring. The pyrimidine ring adopts half chair conformation; the puckering parameters are $q_2 = 0.312$ (1) Å, $\varphi = 236.3$ (2)°, and $\theta = 104.2$ (1)° (Cremer & Pople, 1975), and the lowest displacement asymmetry parameters $\Delta_S(C7)$ is 2.3 (1)°, $\Delta_2(C10)$ is 22.4 (1)° (Nardelli, 1983).

The benzene ring is planar, the larget displacement observed being -0.008 (1) Å for atom C6. The dihedral angle between the pyrimidine and benzene rings is 89.5 (1)°, close to the value of 86.5 (1)° found in ethyl 1,2,3,4-tetrahydro-6-methyl-2-oxo-4-phenylpyrimidine-5-carboxylate.

The crystal packing is characterized by classical N—H···O and C—H···O inter and intramolecular hydrogen bonds (Table 1).

Experimental

To a suspension of NaH (0.100 g, 2 mmol, 50% dispersion in mineral oil washed with hexane) in dry THF (25 ml) was added a solution of dihydropyrimidone, (0.594 g, 2 mmol) in dry THF (10 ml) and stirred in an atmosphere of N_2 for one hour. Then a solution of allyl bromide (0.2 ml, 2.5 mmol) in dry THF (5 ml) was added drop wise and stirred for futher four hours. (TLC control, silica, ethyl acetate: hexane 1:9 as eluent). Evaporation of solvent under reduced pressure, followed by purification of the residue by column chromatography gave a yellow solid. Single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of a solution in ethanol (mp 368–369 K).

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent C atoms, with C—H distances fixed in the range 0.93–0.98 Å and N—H distance of 0.86 Å, with $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and $U_{iso}(H) = 1.2U_{eq}(C, N)$ for other H atoms.

Figures

Fig. 1. The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.

Ethyl 2-allylsulfanyl-4-(4-methoxyphenyl)-6-methyl-1,4-dihydropyrimidine-5-carboxylate

$C_{18}H_{22}N_2O_3S$
$M_r = 346.44$
Monoclinic, $C2/c$
Hall symbol: -C 2yc
<i>a</i> = 28.325 (5) Å
<i>b</i> = 7.410 (2) Å
c = 20.202 (4) Å
$\beta = 121.61 \ (3)^{\circ}$
$V = 3610.9 (18) \text{ Å}^3$
Z = 8

 $F_{000} = 1472$ $D_x = 1.275 \text{ Mg m}^{-3}$ Mo K α radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 7889 reflections $\theta = 2.6-25^{\circ}$ $\mu = 0.20 \text{ mm}^{-1}$ T = 293 (2) KNeedle, yellow $0.4 \times 0.2 \times 0.1 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer'	3183 independent reflections
Radiation source: fine-focus sealed tube	2722 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.026$
T = 293(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω and φ scan	$\theta_{\min} = 1.7^{\circ}$
Absorption correction: Multi-scan (SADABS; Bruker, 2004)	$h = -33 \rightarrow 33$
$T_{\min} = 0.954, \ T_{\max} = 0.983$	$k = -8 \rightarrow 8$
16675 measured reflections	$l = -24 \rightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.140$	$w = 1/[\sigma^2(F_o^2) + (0.0785P)^2 + 3.5811P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{\text{max}} = 0.002$
3183 reflections	$\Delta \rho_{max} = 0.48 \text{ e} \text{ Å}^{-3}$
220 parameters	$\Delta \rho_{\rm min} = -0.33 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

Special details

methods

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.15041 (3)	0.63300 (8)	0.44134 (3)	0.0551 (2)
01	0.33272 (7)	1.1779 (2)	0.34204 (10)	0.0580 (4)
O2	0.06407 (7)	1.4020 (2)	0.24877 (9)	0.0522 (4)
O3	0.01426 (7)	1.2100 (2)	0.15153 (9)	0.0617 (5)
N1	0.14728 (7)	0.9848 (2)	0.40787 (9)	0.0385 (4)
N2	0.09759 (7)	0.7816 (2)	0.30377 (10)	0.0387 (4)
H2	0.0954	0.6715	0.2889	0.046*
C1	0.23063 (8)	1.2512 (3)	0.39532 (11)	0.0399 (5)
H1	0.2280	1.3171	0.4325	0.048*
C2	0.27875 (9)	1.2591 (3)	0.39437 (13)	0.0456 (5)
H2A	0.3082	1.3292	0.4308	0.055*
C3	0.28341 (8)	1.1622 (3)	0.33898 (12)	0.0406 (5)
C4	0.23922 (9)	1.0596 (3)	0.28488 (12)	0.0424 (5)
H4	0.2418	0.9951	0.2474	0.051*
C5	0.19079 (8)	1.0533 (3)	0.28672 (11)	0.0387 (5)
Н5	0.1611	0.9844	0.2499	0.046*
C6	0.18558 (8)	1.1467 (2)	0.34195 (11)	0.0331 (4)
C7	0.13489 (8)	1.1274 (2)	0.34918 (11)	0.0334 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H7	0.1298	1.2415	0.3692	0.040*
C8	0.13171 (8)	0.8265 (3)	0.38169 (11)	0.0359 (4)
C9	0.06696 (8)	0.9154 (3)	0.25004 (11)	0.0355 (4)
C10	0.08227 (8)	1.0897 (3)	0.27177 (11)	0.0341 (4)
C11	0.02055 (9)	0.8432 (3)	0.17415 (13)	0.0484 (5)
H11A	-0.0117	0.9173	0.1562	0.073*
H11B	0.0123	0.7217	0.1813	0.073*
H11C	0.0315	0.8444	0.1365	0.073*
C12	0.05336 (8)	1.2485 (3)	0.22475 (12)	0.0382 (5)
C13	-0.01773 (13)	1.3590 (4)	0.10104 (16)	0.0718 (8)
H13A	0.0067	1.4473	0.0989	0.086*
H13B	-0.0387	1.4178	0.1204	0.086*
C14	-0.05525 (19)	1.2832 (6)	0.0238 (2)	0.1255 (18)
H14A	-0.0341	1.2191	0.0066	0.188*
H14B	-0.0755	1.3789	-0.0120	0.188*
H14C	-0.0807	1.2017	0.0261	0.188*
C15	0.33997 (12)	1.0703 (4)	0.28976 (19)	0.0700 (8)
H15A	0.3327	0.9462	0.2949	0.105*
H15B	0.3774	1.0823	0.3016	0.105*
H15C	0.3147	1.1098	0.2374	0.105*
C16	0.19334 (12)	0.7289 (4)	0.53535 (15)	0.0662 (7)
H16A	0.2215	0.6410	0.5676	0.079*
H16B	0.2122	0.8324	0.5304	0.079*
C17	0.16579 (19)	0.7873 (5)	0.57661 (19)	0.0867 (10)
H17	0.1891	0.8174	0.6287	0.104*
C18	0.1139 (2)	0.8017 (6)	0.5498 (3)	0.1070 (13)
H18A	0.0884	0.7736	0.4981	0.128*
H18B	0.1015	0.8404	0.5820	0.128*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0785 (5)	0.0335 (3)	0.0492 (4)	-0.0010 (3)	0.0305 (3)	0.0058 (2)
01	0.0468 (9)	0.0614 (11)	0.0707 (11)	-0.0059 (8)	0.0342 (8)	-0.0012 (9)
O2	0.0615 (10)	0.0249 (8)	0.0522 (9)	0.0007 (7)	0.0174 (8)	-0.0004 (7)
O3	0.0692 (11)	0.0348 (9)	0.0446 (9)	0.0068 (8)	0.0045 (8)	0.0012 (7)
N1	0.0498 (10)	0.0318 (9)	0.0347 (9)	-0.0012 (7)	0.0226 (8)	0.0015 (7)
N2	0.0510 (10)	0.0219 (8)	0.0409 (9)	0.0009 (7)	0.0224 (8)	-0.0030(7)
C1	0.0456 (11)	0.0325 (11)	0.0356 (10)	-0.0020 (8)	0.0171 (9)	-0.0050 (8)
C2	0.0414 (11)	0.0391 (12)	0.0444 (11)	-0.0100 (9)	0.0142 (9)	-0.0054 (9)
C3	0.0393 (11)	0.0361 (11)	0.0454 (11)	0.0010 (8)	0.0215 (9)	0.0083 (9)
C4	0.0521 (12)	0.0385 (11)	0.0400 (11)	-0.0019 (9)	0.0264 (10)	-0.0029 (9)
C5	0.0419 (11)	0.0337 (11)	0.0358 (10)	-0.0082 (8)	0.0171 (9)	-0.0065 (8)
C6	0.0395 (10)	0.0237 (9)	0.0313 (9)	0.0004 (7)	0.0151 (8)	0.0028 (7)
C7	0.0415 (10)	0.0240 (9)	0.0331 (9)	-0.0002 (8)	0.0184 (8)	-0.0013 (7)
C8	0.0436 (11)	0.0294 (10)	0.0383 (10)	0.0022 (8)	0.0239 (9)	0.0033 (8)
C9	0.0372 (10)	0.0307 (10)	0.0387 (10)	-0.0005 (8)	0.0200 (9)	-0.0024 (8)
C10	0.0376 (10)	0.0270 (10)	0.0359 (10)	0.0006 (8)	0.0180 (8)	-0.0002 (8)

C11	0.0488 (13)	0.0345 (12)	0.0484 (12))	-0.0045 (9)	0.0161 (10)	-0.0061 (9)
C12	0.0380 (10)	0.0333 (11)	0.0405 (11))	0.0007 (8)	0.0187 (9)		0.0004 (8)
C13	0.0752 (18)	0.0447 (15)	0.0550 (15))	0.0156 (13)	0.0063 (13)	0.0100 (12)
C14	0.133 (3)	0.085 (3)	0.065 (2)		0.022 (2)	-0.013 (2)		0.0010 (19)
C15	0.0728 (17)	0.0696 (18)	0.094 (2)		0.0004 (14)	0.0614 (17)	0.0047 (16)
C16	0.0784 (18)	0.0486 (15)	0.0485 (14))	-0.0047 (13)	0.0173 (13)	0.0134 (11)
C17	0.129 (3)	0.067 (2)	0.0587 (17))	-0.014 (2)	0.045 (2)		-0.0015 (15)
C18	0.141 (4)	0.098 (3)	0.103 (3)		0.017 (3)	0.078 (3)		0.004 (2)
Geometric param	neters (Å, °)							
S1—C8		1.766 (2)	С	7—H7			0.9800	
S1—C16		1.780 (3)	С	9—C10)		1.359 (3	3)
O1—C3		1.370 (3)	С	9—C11			1.501 (3	3)
O1—C15		1.421 (3)	С	210—C1	2		1.464 (3	3)
O2—C12		1.211 (2)	С	:11—H1	1A		0.9600	,
O3—C12		1.334 (3)	С	:11—H1	1B		0.9600	
O3—C13		1.453 (3)	С	:11—H1	1C		0.9600	
N1—C8		1.267 (3)	С	12—02	2		1.211 (2	2)
N1—C7		1.486 (2)	С	213—C1	4		1.464 (4	4)
N2—C8		1.388 (3)	С	13—Н1	3A		0.9700	
N2—C9		1.389 (3)	С	13—Н1	3B		0.9700	
N2—H2		0.8600	С	14—H1	4A		0.9600	
C1—C2		1.374 (3)	С	214—H1	4B		0.9600	
C1—C6		1.395 (3)	С	214—H1	4C		0.9600	
C1—H1		0.9300	С	15—Н1	5A		0.9600	
C2—C3		1.393 (3)	С	15—Н1	5B		0.9600	
C2—H2A		0.9300	С	15—Н1	5C		0.9600	
C3—C4		1.380 (3)	С	216—C1	7		1.474 (5	5)
C4—C5		1.392 (3)	С	16—H1	6A		0.9700	,
C4—H4		0.9300	С	16—H1	6B		0.9700	
C5—C6		1.385 (3)	С	217—C1	8		1.277 (5	5)
С5—Н5		0.9300	С	:17—H1	7		0.9300	,
С6—С7		1.524 (3)	С	18—H1	8A		0.9300	
C7—C10		1.517 (3)	С	18—H1	8B		0.9300	
C8—S1—C16		101.35 (11)	С	9—C11	—H11B		109.5	
C3—O1—C15		117.37 (19)	Н	[11A—(C11—H11B		109.5	
C12—O3—C13		117.77 (18)	С	9—C11	—H11C		109.5	
C8—N1—C7		116.11 (16)	Н	[11A—0	C11—H11C		109.5	
C8—N2—C9		119.55 (16)	Н	[11B—0	C11—H11C		109.5	
C8—N2—H2		120.2	0	02—C12	2—03		122.22	(18)
C9—N2—H2		120.2	0	02—C12	2—03		122.22	(18)
C2—C1—C6		121.64 (19)	0	02—C12	2—C10		123.91	(19)
С2—С1—Н1		119.2	0	02—C12	2—C10		123.91	(19)
С6—С1—Н1		119.2	0	03—C12	2—C10		113.86 ((17)
C1—C2—C3		120.11 (19)	0	03—C13	3—C14		107.1 (2	2)
C1—C2—H2A		119.9	0	03—C13	3—H13A		110.3	
C3—C2—H2A		119.9	С	C14—C1	3—Н13А		110.3	
O1—C3—C4		124.2 (2)	0	03—C13	3—H13B		110.3	

o	11 (0 1 (1 0)		
$01 - C_3 - C_2$	116.34 (19)	С14—С13—Н13В	110.3
C4—C3—C2	119.44 (19)	H13A—C13—H13B	108.5
C3—C4—C5	119.65 (19)	С13—С14—Н14А	109.5
C3—C4—H4	120.2	C13—C14—H14B	109.5
C5—C4—H4	120.2	H14A—C14—H14B	109.5
C6—C5—C4	121.81 (18)	C13—C14—H14C	109.5
С6—С5—Н5	119.1	H14A—C14—H14C	109.5
C4—C5—H5	119.1	H14B—C14—H14C	109.5
C5—C6—C1	117.34 (18)	O1-C15-H15A	109.5
C5—C6—C7	122.25 (17)	O1-C15-H15B	109.5
C1—C6—C7	120.26 (17)	H15A—C15—H15B	109.5
N1—C7—C10	112.63 (15)	O1-C15-H15C	109.5
N1—C7—C6	107.63 (15)	H15A—C15—H15C	109.5
C10—C7—C6	112.61 (15)	H15B-C15-H15C	109.5
N1—C7—H7	107.9	C17—C16—S1	116.9 (2)
С10—С7—Н7	107.9	С17—С16—Н16А	108.1
С6—С7—Н7	107.9	S1—C16—H16A	108.1
N1—C8—N2	125.34 (17)	С17—С16—Н16В	108.1
N1—C8—S1	123.53 (15)	S1—C16—H16B	108.1
N2—C8—S1	111.13 (14)	H16A—C16—H16B	107.3
C10—C9—N2	117.60 (18)	C18—C17—C16	128.1 (3)
C10—C9—C11	128.98 (19)	С18—С17—Н17	115.9
N2-C9-C11	113 43 (17)	C16—C17—H17	115.9
C9-C10-C12	125.37 (18)	C17—C18—H18A	120.0
C9 - C10 - C7	118 86 (17)	C17—C18—H18B	120.0
$C_{12} - C_{10} - C_{7}$	115.70 (16)	H18A - C18 - H18B	120.0
$C_{12} = C_{10} = C_{1}$	109.5		120.0
	109.5		170 (2 (1()
C6-C1-C2-C3	0.3 (3)	C16—S1—C8—N2	1/9.62 (16)
C15—O1—C3—C4	-5.1 (3)	C8—N2—C9—C10	17.0 (3)
C15—O1—C3—C2	175.6 (2)	C8—N2—C9—C11	-163.18 (18)
C1—C2—C3—O1	179.86 (19)	N2-C9-C10-C12	-176.65 (17)
C1—C2—C3—C4	0.5 (3)	C11—C9—C10—C12	3.6 (3)
O1—C3—C4—C5	-179.79 (19)	N2—C9—C10—C7	6.3 (3)
C2—C3—C4—C5	-0.5 (3)	C11—C9—C10—C7	-173.39 (19)
C3—C4—C5—C6	-0.4 (3)	N1—C7—C10—C9	-29.8 (2)
C4—C5—C6—C1	1.2 (3)	C6—C7—C10—C9	92.1 (2)
C4—C5—C6—C7	-174.30 (18)	N1-C7-C10-C12	152.88 (16)
C2—C1—C6—C5	-1.2 (3)	C6—C7—C10—C12	-85.2 (2)
C2—C1—C6—C7	174.42 (18)	C13—O3—C12—O2	-2.9 (3)
C8—N1—C7—C10	31.2 (2)	C13—O3—C12—O2	-2.9 (3)
C8—N1—C7—C6	-93.6 (2)	C13-O3-C12-C10	178.3 (2)
C5—C6—C7—N1	93.2 (2)	C9—C10—C12—O2	171.3 (2)
C1—C6—C7—N1	-82.1 (2)	C7—C10—C12—O2	-11.6 (3)
C5—C6—C7—C10	-31.5 (2)	C9—C10—C12—O2	171.3 (2)
C1—C6—C7—C10	153.14 (17)	C7—C10—C12—O2	-11.6 (3)
C7—N1—C8—N2	-10.0 (3)	C9—C10—C12—O3	-10.0 (3)
C7—N1—C8—S1	170.98 (14)	C7—C10—C12—O3	167.10 (17)
C9—N2—C8—N1	-16.0 (3)	C12—O3—C13—C14	177.0 (3)
C9-N2-C8-S1	163 17 (14)	C8 = S1 = C16 = C17	90.0 (2)
C, 112 CO D1			20.0 (2)

C16—S1—C8—N1	-1.2 (2)	S1—C16—C17—C18		-10.8 (5)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2···O2 ⁱ	0.86	2.16	2.990 (2)	161
С7—Н7…О2	0.98	2.46	2.831 (3)	102
Symmetry codes: (i) x , $y-1$, z .				

Fig. 1

